

**Question Paper 2006
Outside Delhi Set-1
Class-12 Chemistry**

General Instructions

1. All questions are compulsory.
2. Marks for each question are indicated against it.
3. Question numbers 1 to 5 are very short-answer questions, carrying 1 mark each. Answer these in one word or about one sentence each.
4. Question numbers 6 to 12 are short-answer questions, carrying 2 marks each. Answer these in about 30 words each.
5. Question numbers 13 to 24 are short-answer questions of 3 marks each. Answer these in about 40 words each.
6. Question numbers 25 to 27 are long-answer questions of 5 marks each. Answer these in about 70 words each.
7. Use Log Tables, if necessary Use of calculators is not permitted.

1. Name the non-stoichiometric point defect responsible for colour in alkali halides. **[1]**
2. Define ‘mole fraction’ of a substance in a solution. **[1]**
3. A reaction is 50% complete in 2 hours and 75% complete in 4 hours. What is the order of the reaction? **[1]**
4. Write the IUPAC name of $CH_3COCH_2COCH_3$. **[1]**
5. Give a chemical test to distinguish between a primary and a secondary amine. **[1]**
6. Account for the following: **[2]**
 - i. N_2 has higher bond dissociation energy than NO.
 - ii. N_2 and CO both have same bond order but CO is more reactive than N_2 .
7. At absolute zero, an exothermic reaction is always spontaneous but at temperatures above absolute zero, we have to consider both enthalpy and entropy before we can predict

spontaneity. Why? [2]

8. Write the chemical equations involved in the preparation of the following: [2]

- i. XeF_4
- ii. H_3PO_3

9. Why is the +2 oxidation state of manganese quite stable, while the same is not true for iron? [Mn = 25, Fe = 26]. [2]

10. Differentiate between conformation and configuration in open chain molecules by giving one example each. [2]

11. Give reasons for the following:

- a. Ortho-nitrophenol is more acidic than ortho-methoxyphenol. [1]
- b. Glycerol is used in cosmetics. [1]

12. Write the structures of monomers used and one use of each of the following polymers: [2]

- a. Teflon
- b. Buna-N

Or

What are biodegradable polymers? Give two examples. [2]

13. What is meant by dual nature of electrons? Calculate the energy and wavelength of the photon emitted by hydrogen atom when the electron makes a transition from $n = 2$ to $n = 1$. Given that the ionization potential is 13.6 eV. $[1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}]$ [3]

14. Calculate the distance between Na^+ and Cl^- ions in NaCl crystal if its density is 2.165 g cm^{-3} . [Molar mass of $\text{NaCl} = 58.5 \text{ g mole}^{-1}$; $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$] [3]

15. a. Urea forms an ideal solution in water. Determine the vapour pressure of an aqueous solution containing 10% by mass of urea at 40° C .

(Vapour pressure of water at $40^\circ \text{ C} = 55.3 \text{ mm of Hg}$) [2]

b. Why is freezing point depression of 0.1 M sodium chloride solution nearly twice that of 0.1 M glucose solution? [1]

16. How is the concept of coupling reactions useful in explaining the occurrence of nonspontaneous thermochemical reactions? Explain giving an example. [3]

17. A certain reaction is 50% complete in 20 minutes at 300 K and the same reaction is again 50% complete in 5 minutes at 350 K. Calculate the activation energy. if it is a first order reaction. $[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}; \log 4 = 0.602]$ [3]

18. a. In which of the following does adsorption take place and why? [1]

i. Silica gel placed in the atmosphere saturated with water.

ii. Anhydrous CaCl_2 placed in the atmosphere saturated with water.

b. How does BF_3 act as a catalyst in industrial process? [1]

c. Give an example of shape-selective catalysis. [1]

Or

a. What are micelles? How do they differ from ordinary colloidal particles? Give two examples of micelles forming substances. [2]

b. State Hardy-Schulze rule. [1]

19. a. Write the electronic configuration of the element with atomic number 102. [1]

b. What is lanthanoid contraction? What is its effect on the chemistry of the elements which follow the lanthanoids? [2]

20. a. Using valence bond theory, predict the shape and magnetic character of $[\text{Ni}(\text{CO})_4]$.

$[\text{Ni}=28]$ [2]

b. Give one example of application of coordination compounds in medicine. [1]

21. a. State Group Displacement Law. Calculate the number of α - particles and β - particles emitted when $^{238}_{92}\text{U}$ changes to $^{206}_{82}\text{Pb}$. [2]

b. What is meant by K-capture in nuclear chemistry? [1]

22. a. Write the steps and conditions involved in the following conversions:

- i. Acetophenone to 2-phenyl-2butanol [1]
- ii. Propene to acetone. [1]
- b. Give a chemical test to distinguish between Methyl acetate and Ethyl acetate. [1]

23. a. Explain the following giving suitable examples: [2]

- i. Sandmeyer's reaction
- ii. Coupling reaction of a diazonium salt

b. Explain the observed K_b border:

$Et_2NH > Et_3N > EtNH_2$ in aqueous solution [1]

24. Define the following and give one example of each: [3]

- a. Antipyretics
- b. Vat dyes
- c. Antibiotics

25. a. State two advantages of H_2-O_2 fuel cell over ordinary cell. [2]

b. Silver is electrodeposited on a metallic vessel of total surface area 900 cm^2 by passing a current of 0.5 amp for two hours. Calculate the thickness of silver deposited.

[Given: Density of silver = 10.5 g cm^{-3} , Atomic mass of silver = 108 amu ,
 $F = 96,500\text{ C mol}^{-1}$] [3]

Or

a. Give reasons for the following: [2]

- i. Rusting of iron is quicker in saline water than in ordinary water.
- ii. Aluminium metal cannot be produced by the electrolysis of aqueous solution of aluminium salt.

b. Resistance of a conductivity cell filled with 0.1 M KCl solution is 100 ohm . If the resistance of the same cell when filled with 0.02 M KCl solution is 520 ohms , calculate the conductivity and molar conductivity of 0.02 M KCl solution. Conductivity of 0.1 KCl solution is 1.29 S m^{-1} [3]

26. Give reasons for each of the following:

- a. SiF_6^{2-} is known but $SiCl_6^{2-}$ is not known. [1]
- b. Sulphur in vapour state exhibits paramagnetic behaviour. [1]
- c. PbO_2 is a stronger oxidizing agent than SnO_2 [1]
- d. H_3PO_2 acts as a monobasic acid. [1]
- e. Bond dissociation energy of F_2 is less than that of Cl_2 [1]

Or

- a. Account for the following:
 - i. Thermal stability of water is much higher than that of H_2S [1]
 - ii. Anhydrous aluminium chloride acts as a catalyst. [1]
 - iii. White phosphorus is more reactive than red phosphorus. [1]
- b. Draw the structures of
 - i. H_3PO_3 and
 - ii. $XeOF_4$ [2]

27. a. What are essential and non-essential amino acids? Give two examples of each. [2]

b. What are the two types of photosynthesis in green plants? Give the basic equations of photosynthesis. [2]

c. Mention the two products of glycolysis. [1]

Or

- a. Define the following terms: [3]
 - i. Co-enzymes
 - ii. Mutation in biomolecules
 - iii. Nucleotides
- b. List four main functions of carbohydrates in organisms. [2]